Estimating Parameters in Physical Models through Bayesian Inversion: A Complete Example
نویسندگان
چکیده
All mathematical models of real-world phenomena contain parameters that need to be estimated from measurements, either for realistic predictions or simply to understand the characteristics of the model. Bayesian statistics provides a framework for parameter estimation in which uncertainties about models and measurements are translated into uncertainties in estimates of parameters. This paper provides a simple, step-by-step example—starting from a physical experiment and going through all of the mathematics—to explain the use of Bayesian techniques for estimating the coefficients of gravity and air friction in the equations describing a falling body. In the experiment we dropped an object from a known height and recorded the free fall using a video camera. The video recording was analyzed frame by frame to obtain the distance the body had fallen as a function of time, including measures of uncertainty in our data that we describe as probability densities. We explain the decisions behind the various choices of probability distributions and relate them to observed phenomena. Our measured data are then combined with a mathematical model of a falling body to obtain probability densities on the space of parameters we seek to estimate. We interpret these results and discuss sources of errors in our estimation procedure.
منابع مشابه
SAR Interferometry, Bayesian inversion, Sarpol-e zahab earthquake, Fault source parameters
Abstract Earthquakes occur at teh border of teh plates and faults, causing financial and casual damages. Teh study of earthquakes and surface deformation is useful in understanding teh mechanism of earthquakes and managing teh risks and crises of earthquakes. A fault can be specified by its geometric source parameters. In Okada’s definition, these parameters are length, width, depth, strike, di...
متن کاملInverse Problems in Imaging Systems and the General Bayesian Inversion Frawework
In this paper, first a great number of inverse problems which arise in instrumentation, in computer imaging systems and in computer vision are presented. Then a common general forward modeling for them is given and the corresponding inversion problem is presented. Then, after showing the inadequacy of the classical analytical and least square methods for these ill posed inverse problems, a Baye...
متن کاملمقایسه روش بیزی (Bayesian) و کلاسیک در برآرد پارامترهای مدل رگرسیون لجستیک با وجود مقادیر گمشده در متغیرهای کمکی
Background and Aim: Logistic regression is an analytic tool widely used in medical and epidemiologic research. In many studies, we face data sets in which some of the data are not recorded. A simple way to deal with such "missing data" is to simply ignore the subjects with missing observations, and perform the analysis on cases for which complete data are available. Materials and Methods: We c...
متن کاملJoint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...
متن کاملEmpirical Bayes for DCM: A Group Inversion Scheme
This technical note considers a simple but important methodological issue in estimating effective connectivity; namely, how do we integrate measurements from multiple subjects to infer functional brain architectures that are conserved over subjects. We offer a solution to this problem that rests on a generalization of random effects analyses to Bayesian inference about nonlinear models of elect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Review
دوره 55 شماره
صفحات -
تاریخ انتشار 2013